

In-Line Flow Meter Series 504FTB

The Kurz 504FTB in-line thermal mass flow meter for applications ranging from vacuum service up to 300 PSIG includes the qualities and features found in all Kurz constant temperature thermal flow meters that make them outperform all other currently available thermal mass flow meters, including:

- The highest repeatability, accuracy, and reliability available
- The fastest response to temperature and velocity changes in the industry
- Constant temperature thermal technology
- High turndown ratio
- Low flow noise
- Continuous self-monitoring electronics that verify the integrity of sensor wiring and measurements
- Sensors do not overheat at zero flow using a unique constant temperature control method and power limiting design
- Sensor lead length independent circuitry

- Completely field configurable using the local user interface or via a computer connection
- Supports HART, Profibus DP, and Modbus communication protocols
- Zero velocity as a valid data point
- Velocity-temperature mapping for wide ranging velocity and temperature
- User-defined binary gas compositions or up to five multiple gas calibrations
- Flexibility with transmitterattached or transmitter-separate designs
- Patent US 7,418,878

Kurz Instruments is dedicated to manufacturing and marketing the best thermal mass flow meters available and to support our customers in their efforts to improve their businesses.

Applications

Process & specialty gases Compressed air Fuel flow Natural gas metering Solvent & VOC recovery NOx control using ammonia Flow calibration Air sampling

Kurz Instruments, Inc. 2411 Garden Road Monterey, CA 93940 800-424-7356 www.KurzInstruments.com

SPECIFICATIONS

Mass flow range Up to 4,000 SCFM (6,240 NCMH) depending on model and calibration option

- Flow accuracy (SCFM at laboratory conditions)
 ± (1% of reading + (A x 20 SFPM))
 where A is the flow area of the 504FTB
- 0.25% reading repeatability
- Velocity time constant 1 second for velocity changes at 6,000 SFPM (constant temperature)
- **Process temperature time constant** 8 seconds for temperature changes at 6,000 SFPM (constant velocity)
- Temperature accuracy ± (0.5% of reading +1°C) for velocities above 100 SFPM
- Electronics operating temperature Integral display

 -13°F to 149°F (-25°C to 65°C)
 Remote aluminum enclosure
 -40°F to 149°F (-40°C to 65°C)
 Remote polycarbonate enclosure
 -13°F to 122°F (-25°C to 50°C)

PROCESS CONDITIONS

- Process pressure rating Up to 300 PSIG (20 BARg)
- Process temperature rating -40°F to 257°F (-40°C to 125°C)

APPROVALS

- **EPA mandatory GHG certification** 40 CFR 98.34(c)(1)
- Alarm output conformity NAMUR NE43
- CE and UKCA compliance EMC, LVD, PED, ROHS, and WEEE
- **cETLus, ATEX, UKEX, IECEx approvals for Explosive Atmospheres protection by Flameproof and Increased Safety** EN/IEC/UL/CSA C22.2/60079-0 EN/IEC/UL/CSA C22.2/60079-1 EN/IEC/UL/CSA C22.2/60079-7 Class I, Div. 1, Group B, C, and D Class I, Div. 2, Group A, B, C, and D

TRANSMITTER FEATURES

- Aluminum (Type 4, IP66) dual chamber polyester powder-coated enclosure
- Adjustable display/keypad orientation
- Optically-isolated 4-20 mA output 12-bit resolution and accuracy Maximum loop resistance is 500Ω at 18 V DC, 800Ω at 24 V DC, 1400Ω at 36 V DC
- Input power AC (85-264 V 50/60 Hz, 24 watts max.) or DC (24 V ±10%), 1 A max.
- Solid state relays
 Optically isolated,
 0.5 A, 24 V AC/DC maximum
- Integral or remote user interface Easy-to-use interface Backlit display / keypad 2-lines of 16-characters each
- User-configurable flow display (scrolling or static)
- User-configurable English or metric units for mass flow rate, mass velocity, or process temperature
 °C, °F, KGH, KGM, NCMH, NLPM, NMPS, PPD, PPH, PPM, SCFH, SCFM, SCMH, SLPM
- Two optically isolated solid-state relays / alarms
 Configurable as alarm outputs, pulsed totalizer output, or air purge cleaning
- Built-in flow totalizers and elapsed time
- User-configurable digital filtering from 0 to 600 seconds
- Configuration/data access
 USB or RS-485 Modbus (ASCII or RTU)
- Meter memory 200 recent events, top 20 min/max, and 56 hours (10 second samples of trends)
- 3-year warranty

SUPPORT & ELEMENT COMPONENTS

- Sensor material C-276 alloy all-welded sensor construction
- Sensor support 316L stainless steel
- Sensor flow body diameter options Available from 3/8" to 4"
- Connection type Raised-face flange (Class 150 ANSI B16.5 or Class 300 ANSI B16.5) or MNPT pipe ends
- 3-year warranty

OPTIONS

- Enclosures Aluminum or remote-only stainless steel or polycarbonate
- Multiple gas calibrations with up to five curves loaded in memory
- User-defined binary gas compositions
- Digital input dedicated to zero-mid-span drift check
- Pulsed output as a remote flow totalizer
- Hardware accessories
 Available hardware includes sun shades, ball valves, cable glands, conduit seals, and cable
- Communication protocols HART (v7 FSK) and PROFIBUS DP
- SIL1 certification via TUV Rheinland

PROCESS TEMPERATURE & COMPENSATION

Temperature influences the physical properties of gases, so temperature compensation is required for a thermal sensor to accurately measure gas flow rates.

- Standard Temperature Compensation (STC) is used for process temperatures from 0°C to 125°C over a moderate velocity range.
- Velocity Temperature Mapping (VTM) is used when the process temperature and gas velocity vary widely. Multiple velocity calibrations are stored in the meter. VTM compensation is based on air; specific gas correlations are required to ensure accuracy at high temperatures.

SPECIALTY GAS VELOCITY CALIBRATION

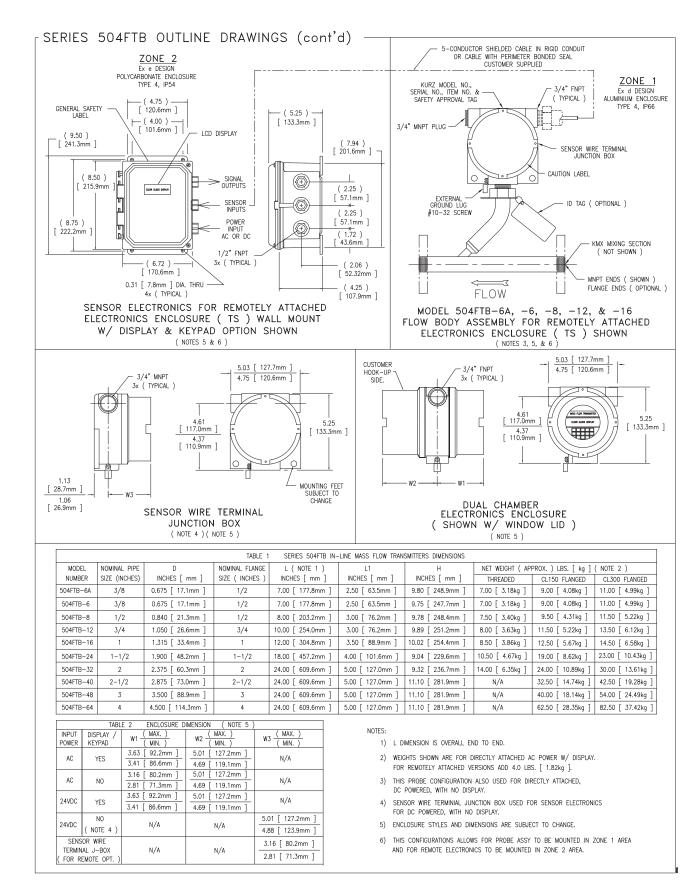
There are two types of gas calibration:

- Laboratory gas calibrations are performed with gases of high purity and are NIST traceable. Values above the calibrating facility limit are correlated up to the specified range. Customers must specify the calibration process pressure.
- **Correlation gas calibrations** are based on experimental data correlated to an Air calibration at ambient pressure and temperature. The flow element is calibrated in Air, and then an additional calibration data sheet is generated using the correlation factors. All correlation calibrations include velocity-temperature mapping.

Add $\pm 5\%$ of reading to the accuracy specification when using a correlation calibration.

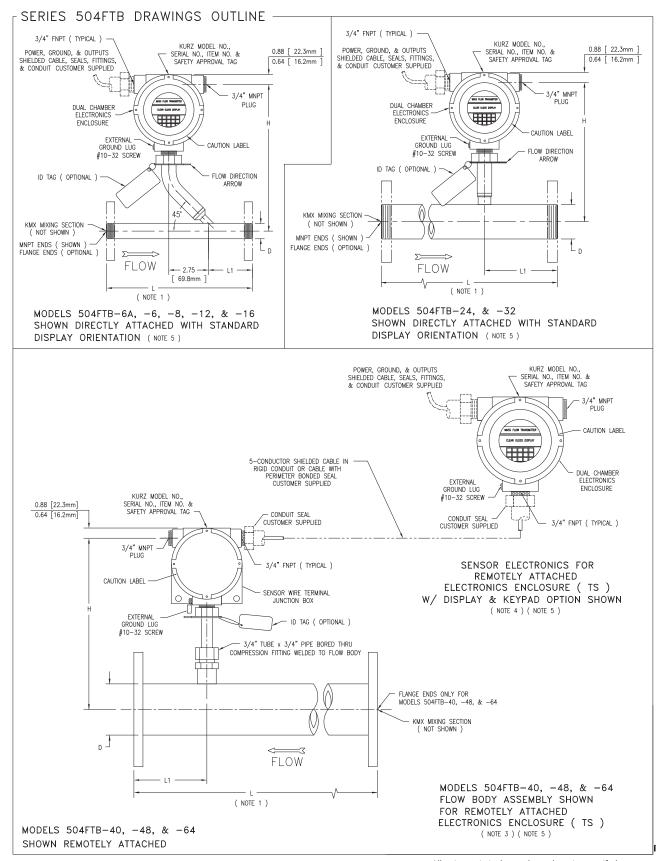
For Oxygen gas, the customer is responsible for ensuring the mass flow sensor is clean of hydrocarbons and safe for Oxygen use.

ANALOG & DIGITAL INPUTS


All options include USB interface with ASCII text and Modbus protocol through RS-485.

The 4-20mA analog outputs (AO) are used for flow rate and/or temperature, or one AO for PID flow control. All AO are NAMUR NE-43 compliant.

Relay digital outputs (DO) can be alarms, EPA zero-mid-span drift is active, or pulsed totalizer function. PID uses one 4-20mA output for the flow controller. The EPA zero-mid-span drift check requires a contact closure to start the drift check. All 4-20mA outputs are used during the Drift Check Calibration process.


EPA zero-mid-span drift check can be initiated using digital inputs (DI), elapsed runtime automatic drift check, Modbus, or HART.

The 4-20mA analog input (AI) supports feedback to the device.

KURZ 2411 Ga

2411 Garden Road • Monterey, CA 93940 | 800-424-7356 • 831-646-5911 | www.KurzInstruments.com

In-Line Thermal Mass Flow Meter

STANDARD FULL-SCALE FLOW RATES

Table A: Standard Full-Scale Flow Rate Ranges (Qmax)				
Flow Area	Laboratory ¹ Calibration Range		Correlated ² Calibration Range	
(11)	SCFM	NCMH	SCFM	NCMH
0.00044	2	3.1	8	12.4
0.00107	10	15.6	40	62.4
0.00179	20	31	80	124
0.00328	40	62	160	248
0.00546	75	117	300	468
0.01337	150	234	600	936
0.02253	300	468	1200	1872
0.03248	400	624	1600	2496
0.05057	600	936	2400	3744
0.08763	1000	1560	4000	6240
	Flow Area (ft ²) 0.00044 0.00107 0.00179 0.00328 0.00546 0.01337 0.02253 0.03248 0.03248	Labora Calibration Calibration SCFM 0.00044 2 0.00107 10 0.00179 20 0.00328 40 0.00546 75 0.01337 150 0.02253 300 0.03248 400	Laboratory 1 Calibration Range Calibration Range SCFM NCMH 0.00044 2 3.1 0.00107 10 15.6 0.00179 20 31 0.00328 40 62 0.00546 75 117 0.01337 150 234 0.02253 300 468 0.03248 400 624 0.05057 600 936	Laboratory 1 Calibration Range (ft²) Correl Calibration SCFM Correl NCMH 0.00044 2 3.1 8 0.00107 10 15.6 40 0.00179 20 31 80 0.00328 40 62 160 0.00546 75 117 300 0.01337 150 234 600 0.02253 300 468 1200 0.03248 400 624 1600 0.05057 600 936 2400

Note:	1. The baseline maximum flow rate for each transmitter model number.
	2. Compressed air only.

SCFM	Standard Cubic Feet Per Minute, Reference: 77°F, 14.69 PSIA
NCMH	Normal Cubic Meters Per Hour, Reference 0°C, 760 mmHg NCMH = 1.56 x SCFM (approximate)

ESTIMATED PRESSURE DROP

To compute the expected pressure drop for a flow rate, multiply the full scale pressure drop by the square of the flow ratio.

Table B: Estimated Pressure Drop (DPs)			
Gas Type	Inches H ₂ O	mm H ₂ O	kPa
Air	30.0	762	7.47
Argon	41.4	1051	10.31
Butane	60.2	1529	15.00
Carbon Dioxide	45.6	1158	11.36
Dry Ammonia	17.6	448	4.40
Dry Chlorine	73.4	1866	18.29
Ethane	31.1	791	7.76
Ethylene	29.1	738	7.24
Helium	4.1	105	1.03
Hydrogen	2.1	53	0.52
Methane	16.6	422	4.14
Digester Gas: 50% CH4, 50% CO2	31.1	790	7.75
Digester Gas: 60% CH4, 40% CO2	28.2	716	7.03
Digester Gas: 70% CH4, 30% CO2	25.3	643	6.30
Nitrogen	29.0	737	7.23
Oxygen	33.1	841	8.25
Propane	45.7	1160	11.38

Note: Estimated standard pressure drop is the end-to-end pressure drop at Standard Full-Scale Conditions listed in Table A.

Series 504FTB

Ρ

2411 Garden Road • Monterey, CA 93940 | 800-424-7356 • 831-646-5911 | www.KurzInstruments.com

755

arent Nu	ımber	Model	Pipe Size & Length	
	755960	504FTB-06A	0.375″ x 7″	(10 x 178 mm)
	755961	504FTB-06	0.375″ x 7″	(10 x 178 mm)
	755962	504FTB-08	0.5″ x 8″	(13 x 203 mm)
	755963	504FTB-12	0.75″ x 10″	(19 x 254 mm)
	755964	504FTB-16	1″ x 12″	(25 x 305 mm)
	755965	504FTB-24	1.5″ x 18″	(38 x 457 mm)
	755966	504FTB-32	2" x 24"	(51 x 610 mm)
	755967	504FTB-40	2.5" x 24"	(64 x 610 mm)
	755968	504FTB-48	3" x 24"	(76 x 610 mm)
	755969	504FTB-64	4" x 24"	(102 x 610 mm)

Note: Models 504FTB-06 to 504FTB-32 use the MD sensor type. Model s 504FTB-40 to 504FTB-64 use the FD2 sensor type.

F1	Option	Electronics Enclosure Configuration and Input Power		
	A	Directly attached dual-chamber electronics enclosure, AC power, display / keypad		
	В	Directly attached dual-chamber electronics enclosure, AC power, without display / keypad		
	c	Directly attached dual-chamber electronics enclosure rotated 180° for viewing, AC power, display / keypad		
	D Remote dual-chamber electronics enclosure, AC power, display / keypad			
	E	Remote dual-chamber electronics enclosure, AC power, without display / keypad		
	F	Directly attached dual-chamber electronics enclosure, DC power, display / keypad		
	G	Directly attached dual-chamber electronics enclosure rotated 180° for viewing, DC power, display / keypad		
	н	Directly attached single-chamber electronics enclosure, DC power, without display / keypad		
	I	Remote dual-chamber electronics enclosure, DC power, display / keypad		
	J	Remote single-chamber electronics enclosure, DC power, without display / keypad		
	R	Remote polycarbonate electronics enclosure, AC power, with display / keypad		
	S	Remote polycarbonate electronics enclosure, AC power, without display / keypad		
	т	Remote stainless steel electronics enclosure, AC power, with display / keypad		
	v	Remote stainless steel electronics enclosure, AC power, without display / keypad		
	w	Remote stainless steel electronics enclosure, DC power, with display / keypad		
	х	Remote stainless steel electronics enclosure, DC power, without display / keypad		

F2	Sensor Material / Flow Body and Flange Material				
	Choose or	Choose one option from each category.			
	Option	Sensor Material			
	3	C-276 alloy			
	Option	Flow Body and Fla	nge Material		
	2	316L stainless steel			
F3	Option	Flow Body Connect	ion Type	Pressure Rating	
10	A	Male NPT pipe ends (M	· ·	300 PSIG	
	В	Class 150 ANSI B16.5 fl		150 PSIG	
	с	Class 300 ANSI B16.5 flanges (CL300) 300 PSIG			
	G	DIN, PN16, RF flanges 16 Bar			
	J	JIS10K, RF flanges 10 kg/cm ²			
F4	Option	Process Temperature Compensation			
	1	Standard temperature compensation over process range of -40° C to 125° C for all gases. Accuracy: $\pm (1 + 2000 \times A/F) \%$, where F = SCFM, A= flow body area (ft ²)			
	Note:	An accuracy specification of $\pm 0.025\%$ (°C = (A*)(0.25 SFPM/°C) should be added for temperatures above or below standard.			
F5	Gas Flow	Rate Calibration Da	ta Range		
	Option	Description	Option	Description	
	А	100% Qmax	I	60% Qmax	

Option	Description	Option	Description
Α	100% Qmax	I	60% Qmax
В	95% Qmax	J	55% Qmax
С	90% Qmax	К	50% Qmax
D	85% Qmax	L	45% Qmax
E	80% Qmax	М	40% Qmax
F	75% Qmax	Ν	35% Qmax
G	70% Qmax	Р	30% Qmax
н	65% Qmax	Q	25% Qmax

Note: Refer to Tables A and B to determine the correct selection for calibration range selection.

6	Laboratory Calibration	Velocity Calib Correlation Calibration		scription
	01	-	Ambient Air	
	07	_	Compressed Air	
	-	ОК	Compressed Air (correlated to 4x f	full scale flow rate)
	-	56	Dry Ammonia	
	08	58	Argon	
	-	60	Butane	
	14	64	Carbon Dioxide	
	-	68	Dry Chlorine	
	20	70	Ethane	
	22	72	Ethylene	
	26	76	Helium	
	28	-	Hydrogen	
	32	82	Methane	
	35	85	Digester Gas	50% CH4 50% CO2
	36	86	Digester Gas	60% CH4 40% CO2
	37	87	Digester Gas	70% CH4 30% CO2
	-	8K	User-Defined Bina	ary Gas Composition
	-	8M	One Gas Curve	
	-	8N	Two Gas Curves	
	-	80	Three Gas Curves	
	-	8P	Four Gas Curves	
	-	8Q	Five Gas Curves	
	40	90	Nitrogen	
	44	94	Oxygen	
	-	95	Ozone	
	46	96	Propane	

Notes: Laboratory gas calibrations are performed with high purity gases and are NIST Traceable. Customers must specify process pressure (Feature 8). Propane to 50 PSIA, all other gases to 150 PSIA. Options 8M-8Q allow up to a 5-gas mix per curve; contact Kurz Sales Support if Hydrogen is included in the mix.

F7	Option	Safety Appro	val	
	A	Aluminum Ex ec IIC T5T3 Gc; C Class I Division 2, Gro DC Electronics Enclos AC Electronics Enclos	CETLus, ATEX, UKEX, and IECEx enclosure Type 4, IP66 Class I Zone 2 AEx ec IIC T5T3 Gc ups A, B, C, and D sure: Ta = -40°C to 55°C (T4) ure: Ta = -40°C to 50°C (T4) or to 65°C: 150°C (T3) -40°C to 55°C (T5) or to 130°C (T3)	
	В	Aluminum Ex db IIB + H2 T5T3 Class I Division 1, Gro DC Electronics Enclos AC Electronics Enclos	Lus, ATEX, UKEX, and IECEx enclosure Type 4, IP66 : Gb; Class I Zone 1 AEx db IIB + H2 T5T3 Gb ups B, C, and D sure: Ta = -40°C to 55°C (T4) ure: Ta = -40°C to 55°C (T4) ure: Ta = -40°C to 55°C (T4) or to 65°C: 150°C (T3) = -40°C to 45°C (T4) or to 110°C (T3)	
D		Transmitter and sensing element separate (Feature 1, Options R and S only) Transmitter Protection by Increased Safety: cETLus, ATEX, UKEX, IECEx Electronics enclosure: Polycarbonate Type 4, IP54 Sensing Element Protection by Flameproof: cETLus, ATEX, UKEX, IECEx Sensor Enclosure: Aluminum Type 4, IP66 AC Electronics Enclosure: Aluminum Type 4, IP66 Ex ce IIC T5T3 Gc; Class I Zone 2 AEx ec IIC T5T3 Gc Class I Division 2, Groups A, B, C, and D Ta: -25°C to 50°C (T4) Sensor Enclosure: Ex db IIB + H2 T5T3 Gb; Class I Zone 1 AEx db IIB + H2 T5T3 Gb Class I Division 1, Groups B, C, and D Ta = -40°C to 75°C (T5) Sensing Element: Tp = -40°C to 45°C (T4) or to 110°C (T3)		
	н	Transmitter and sensing element separate Flameproof: cETLus, ATEX, UKEX, and IECEx Electronics enclosure: Stainless Steel Type 4x, IP6 Sensor Enclosure: Stainless Steel Type 4x, IP66 Ex db IIB + H2 T5T3 Gb; Class I Zone 1 AEx db IIB + H2 T5T3 Gb Class I Division 1, Groups B, C, and D DC Electronics Enclosure: Ta = -40°C to 55°C (T4) AC Electronics Enclosure: Ta = -40°C to 55°C (T4) AC Electronics Enclosure: Ta = -40°C to 75°C (T5) Sensing Element: Tp = -40°C to 45°C (T4) or to 110°C (T3)		
F8	Option	Process Press		
		Process Pressure Enter the Absolute Pressure (PSIA) rounded to a whole number. For example, a process Absolute Pressure of 14.7 PSIA, round to 15.0 and enter 015; for 150 PSIA enter 150.		
F9	Option	Communicati	ons and Inputs/Outputs	
	В	Standard	Two 4-20mA isolated outputs	
	с	Full	Two 4-20mA isolated outputs, two relays, two digital inputs, one non-isolated 4-20mA input	
	E	HART-1	One 4-20mA isolated output, two relays, two digital inputs, one non-isolated 4-20mA input	
	н	HART-2	Two 4-20mA isolated outputs, two relays, two digital inputs, one non-isolated 4-20mA input	
	K	Profibus DP	Two 4-20mA isolated outputs, two relays, two digital inputs, one non-isolated 4-20mA input	

 F10
 Option
 Process Temperature

 Enter the Absolute Temperature (°Rankin = °F + 460) rounded to a whole number. For example, a Process Temperature of 77°F is written as 537 (77 + 460).

 Note:
 Add the letter "S" to the end of Feature 10 to include SIL1

certification via TUV Rheinland.